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Joint Coordinate Method for Analysis and Design of
Multibody Systems: Part 2. System Topology

Gwanghun Gim* and Parviz E. Nikravesh**
(Received July 13, 1992)

In Part I of this paper, the method of joint coordinate formulation for multibody dynamics

was reviewed. The application of this method to forward and inverse dynamics, static equilib­

rium, and design sensitivity analyses was studied. In Part 2 of the paper, systematic procedures
for constructing the necessary matrices for the joint coordinate formulation are discussed in

detail. These matrices are; the primary and the secondary path matrices describing the Itopology

of the system, the velocity transformation matrix, and the generalized inertia matrix. The
procedures for constructing these matrices and other necessary elements for the joint coordinate

formulation can easily be implemented in a computer program for analysis and design process.

Key Words: Topology, Path Matrix, Velocity Transformation Matrix, Generalized Inertia
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1. Introduction

In Part I of this paper (Gim and Nikravesh,
1993), a linear velocity transformation matrix is

described as the relationship between the joint
and the absolute velocities of a multibody system.

The derivation of the equations of motion for

forward and inverse dynamics is shown. Expres­
sions for evaluating reaction and actuator forces

at a kinematic joint are derived using joint coor­
dinate method. An application of the joint coordi­

nate method to static equilibrium and design

sensitivity analyses are also studied.
In Part 2, a method for constructing the veloc­

ity transformation matrix from block matrices
representing the system kinematics is shown. A
systematic generation of the velocity transforma

• R&D Center, Hankook Tire Mfg. Co., Ltd.
Taejon, 305-343, Republic of Korea

** Department of Aerospace and Mechanical Engi­
neering, University of Arizona, Tucson, AZ 85721,
U.S.A.

tion matrix employs a path matrix representing

the system topology. Using a graphical represen­

tation, the path matrix is constructed to describe

the characteristics of system topology. Detailed
description of the generalized inertia matrix and a
process for its systematic construction is also

presented.

2. Path Matrix

The topology and kinematical propeties of a

large-scale multibody system can be efficiently
represented by a graph. In the graphical represen­

tation of a multibody system, each body is consid­
ered as a node (or vertex) while each kinematic

joint is defined as an edge. Each open-loop is

represented by a branch, but each closed-loop
may be represented by one or two branches

depending on the location of a cut joint in the
closed-loop. Each tree starts from a root toward a
leaf corresponding to the topological path which

starts from a base body toward a leaf body. The
graphical representation employs a path matrix
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where row (i) and column [j]. for i = 1,6. corre­

spond to node i and edge j respectively.

As another example. a double-wishbone sus­

pension system and its graphical representation

are given in Fig. 2.2. The main chassis is defined

as a floating base body. and the knuckle is con­

nected to the main chassis via two revolute joints.

R2 and Rs• and two spherical joints. S:, and 56.
which comprises a closed-loop. A wheel is then

connected to the knuckle by revolute joint R4 • If

which contains the characteristics of the system

topology. Row i and column j of the path matrix

correspond to node i and edge j respectively. If

the path matrix and its elements are denoted by I g

and gu respectively. then gu is defined as

r 1; if edge j is directed away from node i.
giJ="l-l; if edge j is directed toward node i.

0; otherwise.

For convenience. the ground is considered as

node 0 which is not included in path matrix I".
A floating base body is assumed to be connected

to node 0 through an edge. This edge represents

an integration which determines the coordinates

of the floating base body. Furthermore. the edges

should be numbered in sequential order accord­

ing to the order of the path though kinematic

joints do not.

In order to show the construction process of a

path matrix. the Stanford manipulator and its

graphical representation are shown in Fig. 2.1.

This system contains six moving bodies and six

kinematic joints.' Bodies I through 6 are con­

nected to the ground by five revolute joints. Rio
R2• R4• Rs• and R6 • and a prismatic joint T 3.

Based on the graph. a path matrix I g is obtained

as

(l)

(2)
lu= (3)

(4)
(5)
(6)

[1] [2] [3] [4] [5] [6]
-1 1 0 0 0 0
o -1 1 0 0 0
o 0 -1 1 0 0
o 0 0 -1 1 0
o 0 0 0 -1 1
o 0 0 0 0 -1

(2.1 )
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Fig. 2.1 (a) Stanford manipulator and
(b) its graphical representation

the closed-loop is cut at 56. then its reduced

open-loop system is represented by two branches

as shown in Fig. 2.2(b). The path matrix lu is

thus determined as

[1] [2] [3] [4] [5]
(l) -1 1 0 0 1
(2) 0 -1 1 0 0

/g= (3) 0 0 -1 1 0 (2.2)

(4) 0 0 0 -1 0
(5) 0 0 0 0 -1 (5x 5)

Note that the first column of the path matrix

always contains only one -I and the rest are O's.

Also a kinematic joint connected to the ground is

represented by a column that has on Iy one -I and

the rest are O·s. If there exists more than one

floating base body. each column corresponding to

each floating base body has only one -I and O·s.

Otherwise. each column contains one I. one -I.

and O's.

In order to show how a path matrix can be used

to find a closed-loop in case the cut joint is not

selected. one possible graphical representation of

the above example is given in Fig. 2.2(c). Its path
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or Rs provides only one joint coordinate, while
joint 53 or 56 furnishes three joint coordinates.

Therefore, joint 53 or 56 should be selected for
better effectiveness. The choice of a cut joint is
also dependent on the inertia properties of its
adjacent bodies. A computer algorithm has been

successfully implemented to produce automatical­
ly the path matrix of the reduced open-loop

system of a large-scale multi body system contain­

ing closed-loops.
At the next stage, matrix [g is modified in order

to get all the necessary information on the con­

nectivity and path flow of the system. The algor­
ithm for constructing a secondary path matrix [g *

is:

(4)[4)

(a)

(b)

(~52)

[5)

~1))

Chassis

o~ fA> ~
(~F-~ ~

F3) (3)
(5)

[2) (2)

(e)

Fig. 2.2 (a) A double-wishbone suspension system,
(b) the graphical representation of its redu­
ced open-loop system, and (c) the graphical
representation of its closed loop system

matrix [g becomes

(a) Initially set a counter j=2 for the column
of matrix [g.

(b) In column j, find row m having I and row

n having -I.

(c) If gmk<O for k= I, j-I, then perform gnk=

gnk + gmk- I .
(d) If j is equal to the total number of col­

umns, replace all the I's with O's and then stop.

(e) Otherwise, set j=j+1 and go to (b).
Based on the above algorithm, for the Stanford

manipulator, the path matrix of Eq. (2.1) is chan­

ged to

[1] [2] [3] [4] [5] [6]
(1) -1 1 0 0 1 0
(2) 0 -1 1 0 0 0

[.=(3) 0 0 -1 1 0 -1 (2.3)

(4) 0 0 0 -1 0 0
(5) 0 0 0 0 -1 1 (5 x 6)

From Eq. (2.3) it is observed that two - I's at
row (3) indicate a closed-loop because node 3 has

two up-trees which has only one root. If joint 56
is chosen as a cut joint, column [6] is eliminated
from Eq. (2.3) and then Eq. (2.3) becomes identi­
cal to Eq. (2.2).

In this example we have four candidates for a

cut joint such as joints Rz, 53' Rs, and 56' To be
a cut joint, joint Rz or Rs requires five kinematic
constraints, while joint 53 or 56 requires only
three kinematic constraints. Furthermore, joint Rz

[1] [2] [3] [4] [5] [6]
(1) -1 0 0 0 0 0
(2) -2 -1 0 0 0 0

]g*= (3) -3 -2 -1 0 0 0 (2.4)

(4) -4 -3 -2 -1 0 0
(5) -5 -4 -3 -2 -1 0
(6) -6 -5 -4 -3 -2 -1 (6x6)

Similarly, for the suspension system, the path

matrix of Eq. (2.2) becomes

[1] [2] [3] [4] [5]
(l) -1 0 0 0 0
(2) -2 -1 0 0 0

[g* = (3) -3 -2 -1 0 0 (2.5)
(4) -4 -3 -2 -1 0
(5) -2 0 0 0 -1 (5x5)

In matrix [g *, negative integer entries provide
all necessary information on the connectivity of a
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multibody system, and also the numeric order of
the negative integer entries indicates the path flow

of the system. In column j, rows which have
negative integer entries indicate the nodes con­

necting to the root by edge j. A row which has ~ I

indicates the first node connected to edge j, while
a row which contains the smallest negative integer

indicates the last node. The same negative integer
entries in a column indicates more than one

branch. Since the path matrix contains all neces­

sary information on the system topology, It can be
used to construct the velocity transformation

matrix B.

3.Velocity Transformation Matrix

Velocity transformation matrix B depends on
the kinematics and the topology of a multibody

system. If block matrix B u is defined to represent
the local properties of a kinematic joint, then

matrix B can be obtained by assembling block

matrices Bu's based on the system topology.
Block matrices are determined for a floating base
body and various kinematic joints as shown in

Table 2.1 (Kim and Vanderploeg, iI986), where
subscript i stands for body i (or node i) and

subscript j stands for floating base body j or
kinematic joint j (or edge j). It is noted that the

block matrix B <J for a composite joint is deter­

mined as a combination of those of a revoloute
and a prismatic joint. For a floating base body, a
vector of absolute coordinates is dt~fined as the

joint coordinates, while for kinematic joints rela­

tive joint coordinates are used. Vector du is
defined as a vector toward the cente:r of mass of

body i from the center of mass of the floating base

Type of
Joint j

Floating
Base Body

Table 2.1 Block matrix Bu

ID JOi",~ Joint Matrix
Symbols

V[I;"]" I

Axes Size

Global

Fu xyz 6x6

Coordinates

[ ~~u J

[ ~ ::UJ J

6x2

Global i I

XVZ ,tp< I 6 x 3 I
_~oordin~

Uj 1 6x I

---+-----~---+-~~--~~:---~

I I

uj I 6x I IP,.i

C R -- R
'J

-----f----..

Revolute
Joint

[ e)" 1
e;z' i

p·r-;-~-i:-:-v-.---j--C-'-E---R-+---l-~fl~,-1 [uj"~)"I'--i 6:,--L.[=._U_j_l~_-_d_u_gJ_i2U_l J_

12
_'J _

Rev.~Pri. CRoP le),I' j I, [UI I ' ui2'] , 6x2 • l-d,l}IUj!1 uof
l J

Joint 1J fj(2) .1' .I (1)

J. 1 : ; Uj
_____~ ._ ___'___ ..~_~ . ........L.- ~__ _ __-=-__

Prismatic
Joint

Spherical
Joint

Rev.-Rev.
Joint

----~----t__-----t__----

Note:
I. If a revolute-revolute joint has ujIlTUJ'l==O and dU'=d,iJ\ then it becomes a universal joint.
2. If a prismatic-revolute joint has Uj!'=Uj"I, then it becomes a cylindrical joint.
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"s= - dS1Ul el- dazUz ez+ ~ e3- dS4 U4 e 4

- iIssUs es - dsaUs es,

or

d=[ ~3
-dz

Now substituting Eq. (2.6) In the expression for

"a yields

"a= - (iII + iIz+ ii.383 + iI3+ iI4+ ds+ ds) Ul el
- (iIz+ ii.3~ + iI3+ d, + ds+ iIs)Uz ez
+ ~ e3- (iI, + ds+ iIs)u, e,

- (ds+ iIs)Us es - dsUs es,

To obtain expressions for the absolute trans­

lational velocities as a function of the joint veloc­

ities, as an example, the derivation for body 6 is

shown in detail. The translational coordinates of

body 6 can be expressed as

~=~+~+~~+~+~+~+4

Its time derivative gives an expression for the

translational velocities as

"S=d.l+ d.2+ u383 + ~ e 3+ d3+ d4+ ds+ da,
= - ill CUI - ilzcuz -- ii.3CUz 83 + ~ 83

- il3 cu3- d,cu, - iIscus - iIacus,

where iI is a skew-symmetric matrix associated

with the components of vector d=[dl , dz, d3F,
which is defined for vector product operation as

(2.6)

o
o

o

U
1

Fig. 2.4 A schematic representation of Stanford
manipulator for the joint coordinates

o
00

o
o

o
o

o

(a)

CU3=CUZ'

CU4= CU3+ U4 e4'

CUs = CU4 + Us es,
CUa= CUS + Us es.

Floating Base Body j

Fig. 2.3 A schematic representation of vector du for;
(a) a floating base body and (b) a kinematic
joint

(b)

body j, or from the attachment point of joint j

(see Fig. 2.3). If body i is the same as the floating

base body j, then dij=o.
For the purpose of illustrating the construction

of various block matrices, previous two examples

are considered here. For the Stanford manipula­

tor (refer to Fig. 2.1), 8j , for j= 1,6, is defined as

a vector of joint coordinates shown in Fig. 2.4.

The joint coordinates, 81, 8z, 84, 85, and 8a, are

relative rotational coordinates about revolute

joints, R b Rz, R 4, Rs, and Ra, where 83 is a

relative translational coordinate along a prismatic

joint T3 • The absolute velocities of the bodies in

the system can thus be determined in terms of

joint velocities.

For the angular velocities, we have

CUI=Ul eb
CUz= CUI + Uz ez,
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where ~=~6 and vectors dij's are shown in Fig.
2.4. This process can be repeated for all the

bodies to obtain a complete set of absolute trans­

lational velocities as

1-1 = - allul 8h
1-z= - azlul 81- azzUz 8z,
1-3= - a3l u , 81- a3ZUz 8z+ Us 83,

1-4= - a41 UI 81- a 4Z Uz 8z + Us 83-- a 44 u484,

1-S= - aslul 81- aszUz 8z+ Us 83.- a S4 u484

- dssUs 85,

1-6 = - a 61 uI 81 - a6zUz8z+~83- a 64 u48

- a 6S Us 8s - a66Us 86, (2.7)

From Eqs. (2.6) and (2.7), the vector of absolute

velocities can be written as a function of the
vector of joint velocities; i.e.,

rl - all UI 0 0 0 0 0
(1)1 UI 0 0 0 0 0

r2 - a 21u I - a 22 Uz 0 0 0 0
(l)z UI Uz 0 0 0 0 81
r3 - a31 UI - a 32 Uz Us 0 0 0 8z
(1)3 UI Uz 0 0 0 0 83
r4 - a 41 u I - a 4Z Uz Us - a44 u4 0 0 84
(1)4 UI Uz 0 U4 0 0 8s
rs - aSlul - aszUz Us - a S4 u4 - aSS Us 0 86
(l)s U, Uz 0 U4 Us 0
r6 -a6l uI - a 6Z u2 Us - a64 u4 - a 6S Us - a 66 Us

(1)6 UI Uz 0 U4 Us Us

Comparing this equation with v=BO yields

(2.9)

- allul 0 0 0 0 0

UI 0 0 0 0 0

- a 21 UI - azz Uz 0 0 0 0

UI Uz 0 0 0 0

- a31 UI - a3ZUz Us 0 0 0

B=
UI Uz 0 0 0 0

- a 41 u I - a 42Uz U3 - a44u4 0 0

UI Uz 0 U4 0 0

-aslul -aS2 Uz Us -aS4 u4 -assUs 0

UI U2 0 U4 Us 0

- a61 UI - a6ZUz Us - a64 u4 - a 6S Us - a66Us

UI Uz 0 U4 Us Us
(36 X 6)

(2.8)

As a second example, the double-wishbone

suspension system of Fig. 2.2 is shown schemati­
cally in Fig. 2.5. For the main chassis as a float­

ing base body, vectors of absolute translational
and angular velocities, 1-1and (1)1. are defined as
joint velocities, while at the revolute joints, Rz,

R4 , and Rs, relative rotational velocities, 8z, 84 ,

and 8s, are defined as JOint velocities. At the

spherical joint 53' a vector of relative angular
velocities (l)3(r) between bodies 2 and 3 that

share the spherical joint is defined as the joint

velocities. The absolute angular velocities of

bodies in the system can also be obtained as

(l)z = (1)1 + Uz 8z,
(1)3 = (l)z + (1)3 (r),

(1)4 = (1)3 + U484,

(1)5 = (1)1 + Us 8s.

A similar process to that of the previous exam-
ple yields the translational velociti<es as

1-z = 1-1- aZI (1)1 - aZ2Uz 82,

1-3= 1-,- a31 (1)1- a3ZUz 82- a 33(1)J'">'

1-4= 1-1- a41 (1)1- a 42Uz 8z- a 43(1)3(r)- a 44 u484,

1-s= 1-1 - aS1(I)1 - assUs 82, (2.10)

where vectors dij's are shown in Fig. 2.5. From
Eqs. (2.9) and (2.10), the vector of absolute veloc­
ities of the system can be written in terms of the

vector of joint velocities as



Fig. 2.5 A schematic presentation of a double­
wishbone suspension system for the joint
coordinates

The structare of matrix B in Eq. (2.8) or (2.11)

shows that B can be constructed from small block

matrices Bu. Table 2.1 shows Bu matrices for a

variety of kinematic joints. For automatic

construction of B, the negative integer entries (gu

<0) in the secondary path matrix Ig' are re­

placed by their corresponding Bu block matrices

(30x 12)

(2.11 )

o
o
o
o
o
o
o
o

-dssUs

Us

I 0 000
o I 0 0 0

I -dZI -dzzUz 0 0
o I Uz 0 0

I -d31 -d3Z Uz -d33 0
o I Uz I 0
I - d41 - d 4Z Uz - d 43 - d 44 U4
OI Uz I U4

I -dSI 0 0 0
o I 0 0 0

B=
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rl I 0 0 0 0 0

WI 0 I 0 0 0 0

rz I - d ZI - dzzUz 0 0 0 rl

Wz 0 I Uz 0 0 0 WI
r3 I - d 31 - d 3Z Uz - d 33 0 0 8z
W3 0 I Uz I 0 0 w}rI

r4 I - d 41 - d 4Z Uz - d 43 - d 44 U4 0 84

W4 0 I Uz I U4 0 8s
rs I -dSI 0 0 0 -dssUs Us
Ws 0 I 0 0 0 Us

From the above equation we have

Table 2.2 Block matrix flu

Type of ID Matrix
Bi}

Joint j Symbols Size

Floating
Fi} 6x6 roo -:i} ]Base Body

Spherical
Si} 6x3 r-:i} ]Joint

Revolute
Ri} 6xl r-diJuj =- ili}wjuj ]

Joint (JJjUj

Prismatic
Pi} 6xl r WoU

j
]Joint

Rev.-Rev.
(;R.-R

r -d,l)U(II_il!l)wU(I) - dJ2lU(2)- il!2)WU(2) ]
6x2 IJ J l.J J J lJ J l) J J

Joint 'J wjujl) wjuj2)

Pri.-Rev. (;P-R rWj;)')
- d !2) U(2) - il !2)W.U(2) ]

6x2 lJ J lJ J:J

Joint 'J WJuj2)

Rev.-Pri.
(;R.-P

r-d!I)U(l)_ illl)wU!I) Wj~j2) ]6x2 /.J J /..J J J

Joint 'J wjujl)
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from Table 2.1. Then, the zero entries (gij=O) in

the secondary path matrix 1.* are replaced by
their corresponding zero matrices. For the first
and second examples, Eqs. (2.4) and (2.5) give
rise to Eqs. (2.8) and (2.11) respectively.

Since matrix B can be described and construct­

ed systematically, matrix 11 can also be construct­
ed systematically. Table 2.2 shows 11ij block

matrices for several kinematic joints. Note that d
ij can be described as dij= r,- rj+wjdJj.

Fig. 2.6 A quarter pyramid structure of the general­
ized inerti a matrix

This matrix has a structure resembling a quarter-

Then, the product BTMB can be expressed as

/k{M2/k2 J
/k~M2/k2 '

~~M3~2 l~~M3~3 j
~~M3BJ2 l~~M3~3

BJ~M3~2 l~~M3~3 •

5. Conclusion

Note that all of these submatrices are symmetric.

The joint coordinate method employs a linear
velocity transformation matrix between the joint

and the absolute velocities of a multi body system.

This matrix is automatically constructed from
block matrices and a path matrix representing the

system kinematics and topology. This method
generates a small or even a minimal set of equa­
tions of motion necessary for the forward or

inverse dynamics analysis of multi body systems.

Furthermore, the necessary equations for static
equilibrium or design sensitivity analysis are also

obtained as a small or a minimal set of equations.
The joint coordinate method gives rise to easy

computer implementation of the algorithms, auto­
matic generation of the equations, and efficient nu­
merical solution. Since the joint coordinates are
physical coordinates, this method provides an

easy interpretation between the actual system and
its mathematical or computer model. The effective

pyramid as shown in Fig. 2.6. Thl~ pyramid is

composed of submatrices & i ; i = L "', b, where

&1=[B 1{MIBllJ.

M2=[ /k{M2/k1
/k~M2/k1

r
~~M3~1

m3= ~~M3BJI
BJ~M3~1

(2.12)

B=

4. Generalized Inertia Matrix

b b b

2.:.BfJM,Bn 2.:.BfJM,B'2 2.:.B,~M,Bi3'"
i==l i=2 i=3

b b b

2.:.BhM,Bn 2.:.B,~M,B'2 2.:.B,~M,B'3
1=2 i=2 i=3

where M is a quasi-diagonal matrix, M =diag

[Mj, M2, "', Mb ] and M,=diag[m,1, J,]; i=L
"', b. Here, m, is the mass of body i and J, is the

inertia tensor described in the xyz reference
frame. The generalized inertia matrix M is a

symmetric matrix and can be determined numeri­
cally using Eq. (2.12). However, the elements of

if can also be determined directly if we consider
the product of BTMB in explicit form.

Assume that matrix B is constructed from

block matrices as

In Part I of this paper, it is shown that the
generalized inertia matrix M can be expressed as
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generalized masses and generalized forces can be

determined explicitly in terms of block matrices
and vector forms, which in turn provides a power­
ful basis for the design sensitivity analysis and
parallel processing computation.
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